
Dimension Main determinant

1 Business, IT and Administration Professionals

2 Elected officers and political representatives

3 Language (Spanish, Catalan)

4  Input data analysis
We try to understand the sharing behaviors in the 
input data before training.

Method:
1. Correspondence Analysis of Users-Items matrix 

to reduce to 3 main dimensions
2. Factor Analysis of the main dimensions respect 

to the external data

Results:

Step Method

1
Create an embedding 
space with users and items 

Non-negative Matrix 
Factorization

2 Predict new sharing Scalar product

3 Accuracy test
Hits@10 (proportion 
of best items guessed)

2. Recommendation algorithm
We train a recommendation algorithm on the 
input data.

Embedding:
Collaborative Filtering Hypothesis : similar users 
like similar content.
Non-negative Matrix Factorization method [2]:
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With 𝑅 users-items matrix, 𝑃 user embedding, 
𝑄 item embedding.

Performance: 𝐻𝑖𝑡𝑠@10[test−set] = 0.35.
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5. Political explanation
We look at statistical relations between the learned 
embedding dimensions and the external variables.

Learned dimensions 3 and 4 present significative 
statistical correlation with political attitudes.

Fig 1. top users in learned-dimension-3 (right wing) and 
top users in learned-dimension-4 (left wing + antielite)

Fig 2. Expected value of learned-dimension-3
depending on political attitudes.

Recommendation algorithms can learn and leverage 
political opinions of users on social medias.

Political explanation method for recommendations on twitter.

State of the art

Method plan

1  Data collection
We collect data from Twitter.

• 29.373 Users
• 32.639 Items (URLs shared by users)
• 3.277.738 Posts (tweets)
Input data: Users-Items matrix with the number 
of times each user shared each URLs. 

3. User & URL information
We collect external data in order to explain the input 
data structure and the algorithm embedding.

User data:
• Political Attitudes: 
• Left - Right & Antielite-Salience (attitude 

toward elite institutions). 
• Estimated from the French Member of 

Parliament followed by each user. According to 
the existing methodology [3].

• Professional class: 
• Auto declarative profession on twitter user 

description. 
• Recognized with keywords + human 

supervision. 
• Classified according to the French official 

classification CSP2020.
• Language: 
• Main language of the twitter user description. 
• Recognize with NLP tools.

URL data:
• Media category: 
• Media category of the URL according to 

existing classification [4].

Abstract
• Recommender systems in social platforms attract attention in part

because of their potential impact over political phenomena.
• We propose a method to explain recommendation with political

variables.
• We train a collaborative filtering recommendation algorithm on real

world twitter data.
• We leverage political opinion estimation to explain the embedding

learned by the algorithm.

Conclusion
In this work we introduced a new explanation method based on comparing the
algorithm latent embedding with external data. Applying this method on an
algorithm trained on twitter data, we show that it is possible for a standard
recommendation algorithm to learn and leverage political attitudes of users.
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Results
Analyzing the recommendation algorithm (1-2) we see that, while in the input data
determinants are profession and language (3-4), in the algorithm embedding some
dimensions are strongly related only with political attitudes (5).
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Target of explanation Source of explanation

State of Art [1] Result of recommender Input features

Our method Latent embedding of recommender External political data
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