How do recommendation algorithms learn and leverage political preferences of users?

Faverjon Tim, Ramaciotti Pedro médialab Sciences Po, Learning Planet Institute

Abstract

- Recommender systems in social platforms attract attention in part because of their potential impact over political phenomena.
- We propose a method to explain recommendation with political variables.
- We train a collaborative filtering recommendation algorithm on real world twitter data.
- We leverage political opinion estimation to explain the embedding learned by the algorithm.

State of the art

	Target of explanation	Source of explanation
State of Art [1]	Result of recommender	Input features
Our method	Latent embedding of recommender	External political data

Method plan Recommendation algorithm: Input data: 2. Prediction **1.** Embedding Users + Shared **URLs** (users & URLs) (new URLs) **External data** User info: (3) **URL** info: Politics, Domain, **Political** Profession, Type of Input data explanation media... Language... analysis (of embedding (Factor Analysis) dimensions)

Results

Analyzing the recommendation algorithm (1-2) we see that, while in the input data determinants are profession and language (3-4), in the algorithm embedding some dimensions are strongly related only with political attitudes (5).

Conclusion

In this work we introduced a new explanation method based on comparing the algorithm latent embedding with external data. Applying this method on an algorithm trained on twitter data, we show that it is possible for a standard recommendation algorithm to learn and leverage political attitudes of users.

Recommendation algorithms can learn and leverage political opinions of users on social medias.

Political explanation method for recommendations on twitter.

Website & Contact

1 Data collection

We collect data from Twitter.

- 29.373 Users
- 32.639 Items (URLs shared by users)
- 3.277.738 Posts (tweets)

Input data: Users-Items matrix with the number of times each user shared each URLs.

2 Recommendation algorithm

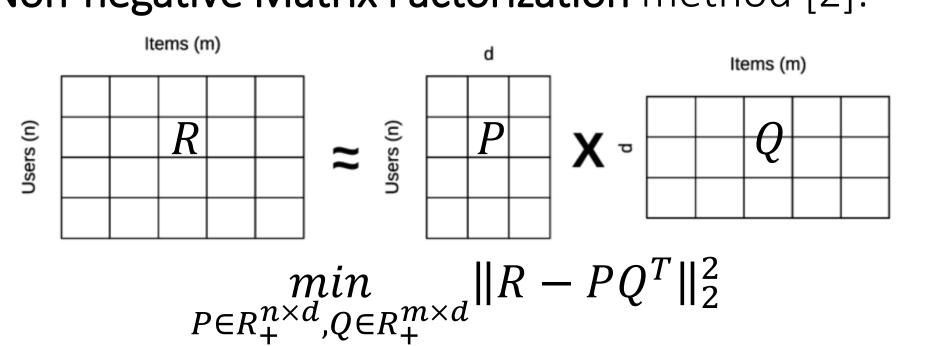
We train a recommendation algorithm on the input data.

	Step	Method
1	Create an <i>embedding</i> space with users and items	Non-negative Matrix Factorization
2	Predict new sharing	Scalar product
3	Accuracy test	Hits@10 (proportion of best items guessed)

Embedding:

Collaborative Filtering Hypothesis: similar users like similar content.

Non-negative Matrix Factorization method [2]:



With R users-items matrix, P user embedding, Q item embedding.

Performance: Hits@10[test-set] = 0.35.

Bibliography

[1]: Tintarev, N., & Masthoff, J. (2007). A survey of explanations in recommender systems.

[2]: Koren, Y., et al. (2009). Matrix factorization techniques for recommender systems.

[3]: Ramaciotti Morales, P., et al. (2022). Inferring attitudinal spaces in social networks. [4]: Cointet, J. P., et al. (2021). Uncovering the

structure of the French media ecosystem.

3 User & URL information

We collect **external data** in order to explain the input data structure and the algorithm embedding.

User data:

Political Attitudes:

- Left Right & Antielite-Salience (attitude toward elite institutions).
- Estimated from the French Member of Parliament followed by each user. According to the existing methodology [3].

Professional class:

- Auto declarative profession on twitter user description.
- Recognized with keywords + human supervision.
- Classified according to the French official classification CSP2020.

Language:

- Main language of the twitter user description.
- Recognize with NLP tools.

<u>URL data:</u>

Media category:

 Media category of the URL according to existing classification [4].

4) Input data analysis

We try to understand the sharing behaviors in the input data before training.

Method:

- 1. Correspondence Analysis of Users-Items matrix to reduce to 3 main dimensions
- 2. Factor Analysis of the main dimensions respect to the external data

Results:

Dimension	Main determinant	
1	Business, IT and Administration Professionals	
2	Elected officers and political representatives	
3	Language (Spanish, Catalan)	

5 Political explanation

We look at statistical relations between the learned embedding dimensions and the external variables.

Learned dimensions 3 and 4 present significative statistical correlation with political attitudes.

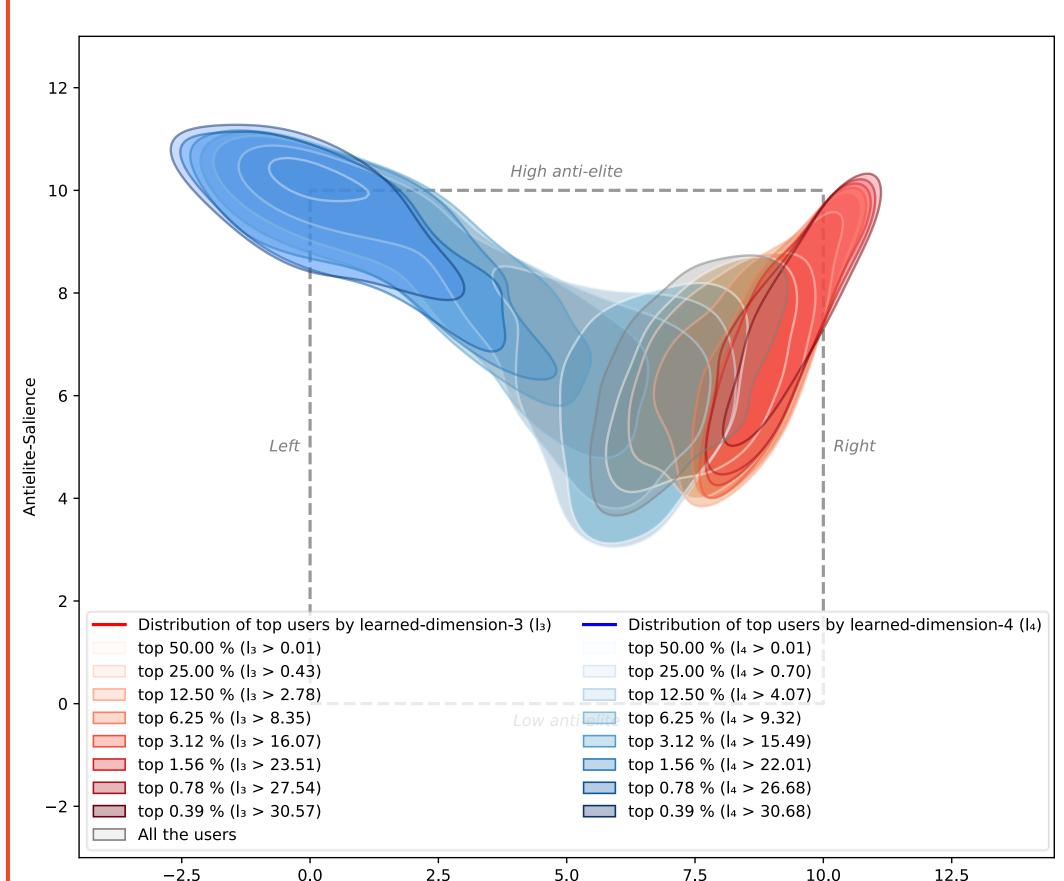


Fig 1. top users in learned-dimension-3 (right wing) and top users in learned-dimension-4 (left wing + antielite)

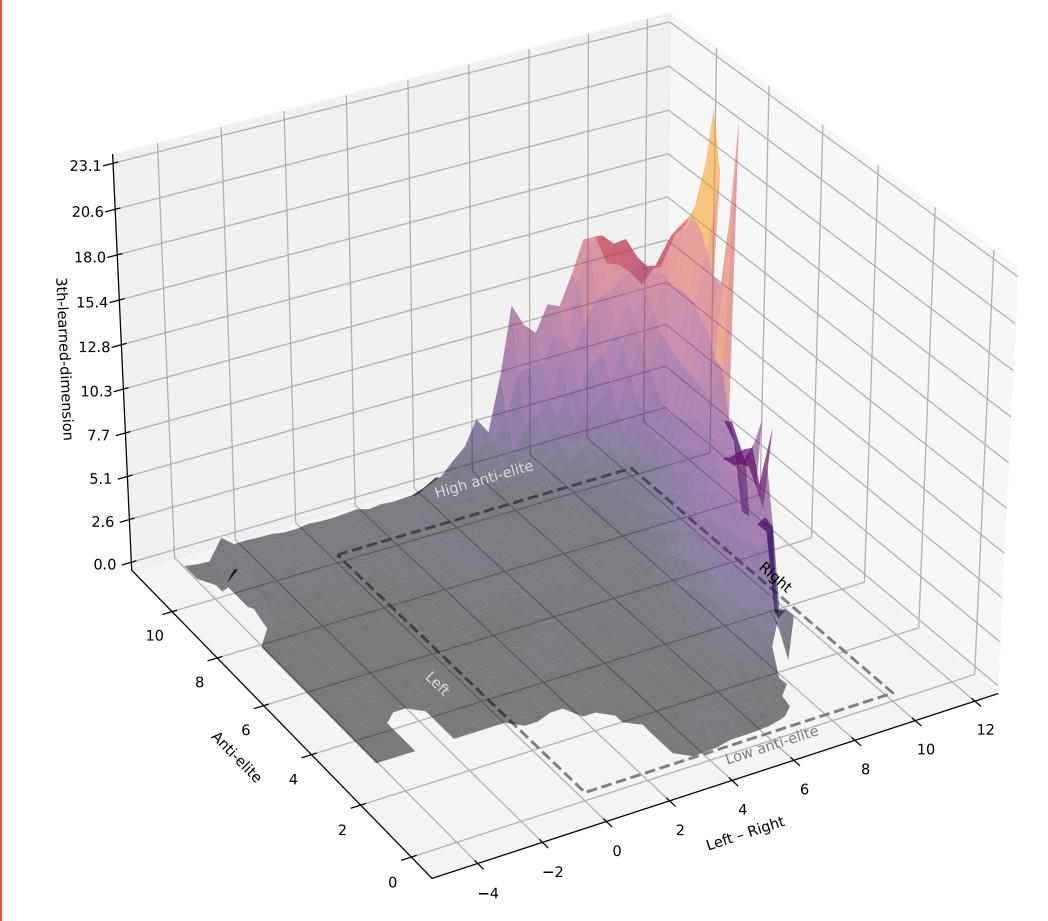


Fig 2. Expected value of learned-dimension-3 depending on political attitudes.